Scatterplot with marginal distributions for all levels of a grouping variable
Source:R/ggscatterstats.R
grouped_ggscatterstats.Rd
Grouped scatterplots from {ggplot2}
combined with marginal distribution
plots with statistical details added as a subtitle.
Arguments
- data
A data frame (or a tibble) from which variables specified are to be taken. Other data types (e.g., matrix,table, array, etc.) will not be accepted. Additionally, grouped data frames from
{dplyr}
should be ungrouped before they are entered asdata
.- ...
Arguments passed on to
ggscatterstats
label.var
Variable to use for points labels entered as a symbol (e.g.
var1
).label.expression
An expression evaluating to a logical vector that determines the subset of data points to label (e.g.
y < 4 & z < 20
). While using this argument withpurrr::pmap()
, you will have to provide a quoted expression (e.g.quote(y < 4 & z < 20)
).point.label.args
A list of additional aesthetic arguments to be passed to
ggrepel::geom_label_repel()
geom used to display the labels.smooth.line.args
A list of additional aesthetic arguments to be passed to
geom_smooth
geom used to display the regression line.marginal
Decides whether marginal distributions will be plotted on axes using
{ggside}
functions. The default isTRUE
. The package{ggside}
must already be installed by the user.point.width.jitter,point.height.jitter
Degree of jitter in
x
andy
direction, respectively. Defaults to0
(0%) of the resolution of the data. Note that the jitter should not be specified in thepoint.args
because this information will be passed to two differentgeom
s: one displaying the points and the other displaying the *labels for these points.xsidehistogram.args,ysidehistogram.args
A list of arguments passed to respective
geom_
s from the{ggside}
package to change the marginal distribution histograms plots.x
The column in
data
containing the explanatory variable to be plotted on thex
-axis.y
The column in
data
containing the response (outcome) variable to be plotted on they
-axis.type
A character specifying the type of statistical approach:
"parametric"
"nonparametric"
"robust"
"bayes"
You can specify just the initial letter.
digits
Number of digits for rounding or significant figures. May also be
"signif"
to return significant figures or"scientific"
to return scientific notation. Control the number of digits by adding the value as suffix, e.g.digits = "scientific4"
to have scientific notation with 4 decimal places, ordigits = "signif5"
for 5 significant figures (see alsosignif()
).conf.level
Scalar between
0
and1
(default:95%
confidence/credible intervals,0.95
). IfNULL
, no confidence intervals will be computed.tr
Trim level for the mean when carrying out
robust
tests. In case of an error, try reducing the value oftr
, which is by default set to0.2
. Lowering the value might help.bf.prior
A number between
0.5
and2
(default0.707
), the prior width to use in calculating Bayes factors and posterior estimates. In addition to numeric arguments, several named values are also recognized:"medium"
,"wide"
, and"ultrawide"
, corresponding to r scale values of1/2
,sqrt(2)/2
, and1
, respectively. In case of an ANOVA, this value corresponds to scale for fixed effects.xlab
Label for
x
axis variable. IfNULL
(default), variable name forx
will be used.ylab
Labels for
y
axis variable. IfNULL
(default), variable name fory
will be used.bf.message
Logical that decides whether to display Bayes Factor in favor of the null hypothesis. This argument is relevant only for parametric test (Default:
TRUE
).results.subtitle
Decides whether the results of statistical tests are to be displayed as a subtitle (Default:
TRUE
). If set toFALSE
, only the plot will be returned.subtitle
The text for the plot subtitle. Will work only if
results.subtitle = FALSE
.caption
The text for the plot caption. This argument is relevant only if
bf.message = FALSE
.point.args
A list of additional aesthetic arguments to be passed to the
ggplot2::geom_point()
.ggplot.component
A
ggplot
component to be added to the plot prepared by{ggstatsplot}
. This argument is primarily helpful forgrouped_
variants of all primary functions. Default isNULL
. The argument should be entered as a{ggplot2}
function or a list of{ggplot2}
functions.ggtheme
A
{ggplot2}
theme. Default value istheme_ggstatsplot()
. Any of the{ggplot2}
themes (e.g.,ggplot2::theme_bw()
), or themes from extension packages are allowed (e.g.,ggthemes::theme_fivethirtyeight()
,hrbrthemes::theme_ipsum_ps()
, etc.). But note that sometimes these themes will remove some of the details that{ggstatsplot}
plots typically contains. For example, if relevant,ggbetweenstats()
shows details about multiple comparison test as a label on the secondary Y-axis. Some themes (e.g.ggthemes::theme_fivethirtyeight()
) will remove the secondary Y-axis and thus the details as well.
- grouping.var
A single grouping variable.
- plotgrid.args
A
list
of additional arguments passed topatchwork::wrap_plots()
, except forguides
argument which is already separately specified here.- annotation.args
A
list
of additional arguments passed topatchwork::plot_annotation()
.
Details
For details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html
Examples
# to ensure reproducibility
set.seed(123)
library(dplyr, warn.conflicts = FALSE)
library(ggplot2)
grouped_ggscatterstats(
data = filter(movies_long, genre == "Comedy" | genre == "Drama"),
x = length,
y = rating,
type = "robust",
grouping.var = genre,
ggplot.component = list(geom_rug(sides = "b"))
)
#> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`.
#> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`.
#> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`.
#> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`.
# using labeling
# (also show how to modify basic plot from within function call)
grouped_ggscatterstats(
data = filter(ggplot2::mpg, cyl != 5),
x = displ,
y = hwy,
grouping.var = cyl,
type = "robust",
label.var = manufacturer,
label.expression = hwy > 25 & displ > 2.5,
ggplot.component = scale_y_continuous(sec.axis = dup_axis())
)
#> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`.
#> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`.
#> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`.
#> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`.
#> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`.
#> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`.
# labeling without expression
grouped_ggscatterstats(
data = filter(movies_long, rating == 7, genre %in% c("Drama", "Comedy")),
x = budget,
y = length,
grouping.var = genre,
bf.message = FALSE,
label.var = "title",
annotation.args = list(tag_levels = "a")
)
#> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`.
#> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`.
#> `stat_xsidebin()` using `bins = 30`. Pick better value with `binwidth`.
#> `stat_ysidebin()` using `bins = 30`. Pick better value with `binwidth`.