Skip to contents

Helper function for ggstatsplot::ggpiestats to apply this function across multiple levels of a given factor and combining the resulting plots using ggstatsplot::combine_plots.

Usage

grouped_ggpiestats(
  data,
  ...,
  grouping.var,
  output = "plot",
  plotgrid.args = list(),
  annotation.args = list()
)

Arguments

data

A dataframe (or a tibble) from which variables specified are to be taken. Other data types (e.g., matrix,table, array, etc.) will not be accepted.

...

Arguments passed on to ggpiestats

x

The variable to use as the rows in the contingency table. Please note that if there are empty factor levels in your variable, they will be dropped.

y

The variable to use as the columns in the contingency table. Please note that if there are empty factor levels in your variable, they will be dropped. Default is NULL. If NULL, one-sample proportion test (a goodness of fit test) will be run for the x variable. Otherwise an appropriate association test will be run. This argument can not be NULL for ggbarstats function.

proportion.test

Decides whether proportion test for x variable is to be carried out for each level of y. Defaults to results.subtitle. In ggbarstats, only p-values from this test will be displayed.

perc.k

Numeric that decides number of decimal places for percentage labels (Default: 0L).

label

Character decides what information needs to be displayed on the label in each pie slice. Possible options are "percentage" (default), "counts", "both".

label.args

Additional aesthetic arguments that will be passed to geom_label.

label.repel

Whether labels should be repelled using ggrepel package. This can be helpful in case the labels are overlapping.

legend.title

Title text for the legend.

type

A character specifying the type of statistical approach:

  • "parametric"

  • "nonparametric"

  • "robust"

  • "bayes"

You can specify just the initial letter.

results.subtitle

Decides whether the results of statistical tests are to be displayed as a subtitle (Default: TRUE). If set to FALSE, only the plot will be returned.

k

Number of digits after decimal point (should be an integer) (Default: k = 2L).

bf.message

Logical that decides whether to display Bayes Factor in favor of the null hypothesis. This argument is relevant only for parametric test (Default: TRUE).

conf.level

Scalar between 0 and 1. If unspecified, the defaults return 95% confidence/credible intervals (0.95).

subtitle

The text for the plot subtitle. Will work only if results.subtitle = FALSE.

caption

The text for the plot caption.

ggtheme

A {ggplot2} theme. Default value is ggstatsplot::theme_ggstatsplot(). Any of the {ggplot2} themes (e.g., theme_bw()), or themes from extension packages are allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.).

package

Name of the package from which the given palette is to be extracted. The available palettes and packages can be checked by running View(paletteer::palettes_d_names).

palette

Name of the package from which the given palette is to be extracted. The available palettes and packages can be checked by running View(paletteer::palettes_d_names).

ggplot.component

A ggplot component to be added to the plot prepared by {ggstatsplot}. This argument is primarily helpful for grouped_ variants of all primary functions. Default is NULL. The argument should be entered as a {ggplot2} function or a list of {ggplot2} functions.

counts

A string naming a variable in data containing counts, or NULL if each row represents a single observation.

paired

Logical indicating whether data came from a within-subjects or repeated measures design study (Default: FALSE). If TRUE, McNemar's test expression will be returned. If FALSE, Pearson's chi-square test will be returned.

ratio

A vector of proportions: the expected proportions for the proportion test (should sum to 1). Default is NULL, which means the null is equal theoretical proportions across the levels of the nominal variable. This means if there are two levels this will be ratio = c(0.5,0.5) or if there are four levels this will be ratio = c(0.25,0.25,0.25,0.25), etc.

sampling.plan

Character describing the sampling plan. Possible options are "indepMulti" (independent multinomial; default), "poisson", "jointMulti" (joint multinomial), "hypergeom" (hypergeometric). For more, see ?BayesFactor::contingencyTableBF().

fixed.margin

For the independent multinomial sampling plan, which margin is fixed ("rows" or "cols"). Defaults to "rows".

prior.concentration

Specifies the prior concentration parameter, set to 1 by default. It indexes the expected deviation from the null hypothesis under the alternative, and corresponds to Gunel and Dickey's (1974) "a" parameter.

grouping.var

A single grouping variable.

output

Character that describes what is to be returned: can be "plot" (default) or "subtitle" or "caption". Setting this to "subtitle" will return the expression containing statistical results. If you have set results.subtitle = FALSE, then this will return a NULL. Setting this to "caption" will return the expression containing details about Bayes Factor analysis, but valid only when type = "parametric" and bf.message = TRUE, otherwise this will return a NULL.

plotgrid.args

A list of additional arguments passed to patchwork::wrap_plots, except for guides argument which is already separately specified here.

annotation.args

A list of additional arguments passed to patchwork::plot_annotation.

Examples

# \donttest{
set.seed(123)
library(ggstatsplot)

# grouped one-sample proportion test
grouped_ggpiestats(mtcars, x = cyl, grouping.var = am)

# }