Bar charts for categorical data with statistical details included in the plot as a subtitle.
Usage
ggbarstats(
data,
x,
y,
counts = NULL,
type = "parametric",
paired = FALSE,
results.subtitle = TRUE,
label = "percentage",
label.args = list(alpha = 1, fill = "white"),
sample.size.label.args = list(size = 4),
digits = 2L,
proportion.test = results.subtitle,
digits.perc = 0L,
bf.message = TRUE,
ratio = NULL,
conf.level = 0.95,
sampling.plan = "indepMulti",
fixed.margin = "rows",
prior.concentration = 1,
title = NULL,
subtitle = NULL,
caption = NULL,
legend.title = NULL,
xlab = NULL,
ylab = NULL,
ggtheme = ggstatsplot::theme_ggstatsplot(),
package = "RColorBrewer",
palette = "Dark2",
ggplot.component = NULL,
...
)
Arguments
- data
A data frame (or a tibble) from which variables specified are to be taken. Other data types (e.g., matrix,table, array, etc.) will not be accepted. Additionally, grouped data frames from
{dplyr}
should be ungrouped before they are entered asdata
.- x
The variable to use as the rows in the contingency table. Please note that if there are empty factor levels in your variable, they will be dropped.
- y
The variable to use as the columns in the contingency table. Please note that if there are empty factor levels in your variable, they will be dropped. Default is
NULL
. IfNULL
, one-sample proportion test (a goodness of fit test) will be run for thex
variable. Otherwise an appropriate association test will be run. This argument can not beNULL
forggbarstats()
.- counts
The variable in data containing counts, or
NULL
if each row represents a single observation.- type
A character specifying the type of statistical approach:
"parametric"
"nonparametric"
"robust"
"bayes"
You can specify just the initial letter.
- paired
Logical indicating whether data came from a within-subjects or repeated measures design study (Default:
FALSE
).- results.subtitle
Decides whether the results of statistical tests are to be displayed as a subtitle (Default:
TRUE
). If set toFALSE
, only the plot will be returned.- label
Character decides what information needs to be displayed on the label in each pie slice. Possible options are
"percentage"
(default),"counts"
,"both"
.- label.args
Additional aesthetic arguments that will be passed to
ggplot2::geom_label()
.- sample.size.label.args
Additional aesthetic arguments that will be passed to
ggplot2::geom_text()
.- digits
Number of digits for rounding or significant figures. May also be
"signif"
to return significant figures or"scientific"
to return scientific notation. Control the number of digits by adding the value as suffix, e.g.digits = "scientific4"
to have scientific notation with 4 decimal places, ordigits = "signif5"
for 5 significant figures (see alsosignif()
).- proportion.test
Decides whether proportion test for
x
variable is to be carried out for each level ofy
. Defaults toresults.subtitle
. Inggbarstats()
, only p-values from this test will be displayed.- digits.perc
Numeric that decides number of decimal places for percentage labels (Default:
0L
).- bf.message
Logical that decides whether to display Bayes Factor in favor of the null hypothesis. This argument is relevant only for parametric test (Default:
TRUE
).- ratio
A vector of proportions: the expected proportions for the proportion test (should sum to
1
). Default isNULL
, which means the null is equal theoretical proportions across the levels of the nominal variable. E.g.,ratio = c(0.5, 0.5)
for two levels,ratio = c(0.25, 0.25, 0.25, 0.25)
for four levels, etc.- conf.level
Scalar between
0
and1
(default:95%
confidence/credible intervals,0.95
). IfNULL
, no confidence intervals will be computed.- sampling.plan
Character describing the sampling plan. Possible options:
"indepMulti"
(independent multinomial; default)"poisson"
"jointMulti"
(joint multinomial)"hypergeom"
(hypergeometric). For more, seeBayesFactor::contingencyTableBF()
.
- fixed.margin
For the independent multinomial sampling plan, which margin is fixed (
"rows"
or"cols"
). Defaults to"rows"
.- prior.concentration
Specifies the prior concentration parameter, set to
1
by default. It indexes the expected deviation from the null hypothesis under the alternative, and corresponds to Gunel and Dickey's (1974)"a"
parameter.- title
The text for the plot title.
- subtitle
The text for the plot subtitle. Will work only if
results.subtitle = FALSE
.The text for the plot caption. This argument is relevant only if
bf.message = FALSE
.- legend.title
Title text for the legend.
- xlab
Label for
x
axis variable. IfNULL
(default), variable name forx
will be used.- ylab
Labels for
y
axis variable. IfNULL
(default), variable name fory
will be used.- ggtheme
A
{ggplot2}
theme. Default value istheme_ggstatsplot()
. Any of the{ggplot2}
themes (e.g.,ggplot2::theme_bw()
), or themes from extension packages are allowed (e.g.,ggthemes::theme_fivethirtyeight()
,hrbrthemes::theme_ipsum_ps()
, etc.). But note that sometimes these themes will remove some of the details that{ggstatsplot}
plots typically contains. For example, if relevant,ggbetweenstats()
shows details about multiple comparison test as a label on the secondary Y-axis. Some themes (e.g.ggthemes::theme_fivethirtyeight()
) will remove the secondary Y-axis and thus the details as well.- package, palette
Name of the package from which the given palette is to be extracted. The available palettes and packages can be checked by running
View(paletteer::palettes_d_names)
.- ggplot.component
A
ggplot
component to be added to the plot prepared by{ggstatsplot}
. This argument is primarily helpful forgrouped_
variants of all primary functions. Default isNULL
. The argument should be entered as a{ggplot2}
function or a list of{ggplot2}
functions.- ...
Currently ignored.
Details
For details, see: https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html
Summary of graphics
graphical element | geom used | argument for further modification |
bars | ggplot2::geom_bar() | NA |
descriptive labels | ggplot2::geom_label() | label.args |
sample size labels | ggplot2::geom_text() | sample.size.label.args |
Contingency table analyses
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
two-way table
Hypothesis testing
Type | Design | Test | Function used |
Parametric/Non-parametric | Unpaired | Pearson's chi-squared test | stats::chisq.test() |
Bayesian | Unpaired | Bayesian Pearson's chi-squared test | BayesFactor::contingencyTableBF() |
Parametric/Non-parametric | Paired | McNemar's chi-squared test | stats::mcnemar.test() |
Bayesian | Paired | No | No |
Effect size estimation
Type | Design | Effect size | CI available? | Function used |
Parametric/Non-parametric | Unpaired | Cramer's V | Yes | effectsize::cramers_v() |
Bayesian | Unpaired | Cramer's V | Yes | effectsize::cramers_v() |
Parametric/Non-parametric | Paired | Cohen's g | Yes | effectsize::cohens_g() |
Bayesian | Paired | No | No | No |
one-way table
Hypothesis testing
Type | Test | Function used |
Parametric/Non-parametric | Goodness of fit chi-squared test | stats::chisq.test() |
Bayesian | Bayesian Goodness of fit chi-squared test | (custom) |
Effect size estimation
Type | Effect size | CI available? | Function used |
Parametric/Non-parametric | Pearson's C | Yes | effectsize::pearsons_c() |
Bayesian | No | No | No |
Examples
# for reproducibility
set.seed(123)
# creating a plot
p <- ggbarstats(mtcars, x = vs, y = cyl)
# looking at the plot
p
# extracting details from statistical tests
extract_stats(p)
#> $subtitle_data
#> # A tibble: 1 × 13
#> statistic df p.value method effectsize
#> <dbl> <int> <dbl> <chr> <chr>
#> 1 21.3 2 0.0000232 Pearson's Chi-squared test Cramer's V (adj.)
#> estimate conf.level conf.low conf.high conf.method conf.distribution n.obs
#> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <int>
#> 1 0.789 0.95 0.371 1 ncp chisq 32
#> expression
#> <list>
#> 1 <language>
#>
#> $caption_data
#> # A tibble: 1 × 15
#> term conf.level effectsize estimate conf.low conf.high
#> <chr> <dbl> <chr> <dbl> <dbl> <dbl>
#> 1 Ratio 0.95 Cramers_v 0.683 0.436 0.840
#> prior.distribution prior.location prior.scale bf10
#> <chr> <dbl> <dbl> <dbl>
#> 1 independent multinomial 0 1 30129.
#> method conf.method log_e_bf10 n.obs expression
#> <chr> <chr> <dbl> <int> <list>
#> 1 Bayesian contingency table analysis ETI 10.3 32 <language>
#>
#> $pairwise_comparisons_data
#> NULL
#>
#> $descriptive_data
#> # A tibble: 5 × 5
#> cyl vs counts perc .label
#> <fct> <fct> <int> <dbl> <chr>
#> 1 4 1 10 90.9 91%
#> 2 6 1 4 57.1 57%
#> 3 4 0 1 9.09 9%
#> 4 6 0 3 42.9 43%
#> 5 8 0 14 100 100%
#>
#> $one_sample_data
#> # A tibble: 3 × 19
#> cyl counts perc N statistic df p.value method effectsize estimate
#> <fct> <int> <dbl> <chr> <dbl> <dbl> <dbl> <chr> <chr> <dbl>
#> 1 8 14 43.8 (n = 14) 14 1 1.83e-4 Chi-s… Pearson's… 0.707
#> 2 6 7 21.9 (n = 7) 0.143 1 7.05e-1 Chi-s… Pearson's… 0.141
#> 3 4 11 34.4 (n = 11) 7.36 1 6.66e-3 Chi-s… Pearson's… 0.633
#> # ℹ 9 more variables: conf.level <dbl>, conf.low <dbl>, conf.high <dbl>,
#> # conf.method <chr>, conf.distribution <chr>, n.obs <int>, expression <list>,
#> # .label <glue>, .p.label <glue>
#>
#> $tidy_data
#> NULL
#>
#> $glance_data
#> NULL
#>
#> attr(,"class")
#> [1] "ggstatsplot_stats" "list"