Skip to contents

Plot with the regression coefficients' point estimates as dots with confidence interval whiskers and other statistical details included as labels.

Usage

ggcoefstats(
  x,
  output = "plot",
  statistic = NULL,
  conf.int = TRUE,
  conf.level = 0.95,
  k = 2L,
  exclude.intercept = FALSE,
  effsize = "eta",
  meta.analytic.effect = FALSE,
  meta.type = "parametric",
  bf.message = TRUE,
  sort = "none",
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  subtitle = NULL,
  caption = NULL,
  only.significant = FALSE,
  point.args = list(size = 3, color = "blue"),
  errorbar.args = list(height = 0),
  vline = TRUE,
  vline.args = list(size = 1, linetype = "dashed"),
  stats.labels = TRUE,
  stats.label.color = NULL,
  stats.label.args = list(size = 3, direction = "y", min.segment.length = 0),
  package = "RColorBrewer",
  palette = "Dark2",
  ggtheme = ggstatsplot::theme_ggstatsplot(),
  ...
)

Arguments

x

A model object to be tidied, or a tidy data frame containing results from a regression model. Function internally uses parameters::model_parameters() to get a tidy dataframe. If a dataframe is entered, it must contain at the minimum two columns named term (names of predictors) and estimate (corresponding estimates of coefficients or other quantities of interest).

output

Character describing the expected output from this function: "plot" (visualization of regression coefficients) or "tidy" (tidy dataframe of results parameters::model_parameters) or "glance" (object from performance::model_performance).

statistic

Which statistic is to be displayed (either "t" or "f"or "z" or "chi") in the label. This is relevant if the x argument is a dataframe.

conf.int

Logical. Decides whether to display confidence intervals as error bars (Default: TRUE).

conf.level

Numeric deciding level of confidence or credible intervals (Default: 0.95).

k

Number of digits after decimal point (should be an integer) (Default: k = 2L).

exclude.intercept

Logical that decides whether the intercept should be excluded from the plot (Default: FALSE).

effsize

Character describing the effect size to be displayed: "eta" (default) or "omega". This argument is relevant only for models objects with F-statistic.

meta.analytic.effect

Logical that decides whether subtitle for meta-analysis via linear (mixed-effects) models (default: FALSE). If TRUE, input to argument subtitle will be ignored. This will be mostly relevant if a data frame with estimates and their standard errors is entered.

meta.type

Type of statistics used to carry out random-effects meta-analysis. If "parametric" (default), metafor::rma function will be used. If "robust", metaplus::metaplus function will be used. If "bayes", metaBMA::meta_random function will be used.

bf.message

Logical that decides whether results from running a Bayesian meta-analysis assuming that the effect size d varies across studies with standard deviation t (i.e., a random-effects analysis) should be displayed in caption. Defaults to TRUE.

sort

If "none" (default) do not sort, "ascending" sort by increasing coefficient value, or "descending" sort by decreasing coefficient value.

xlab

Labels for x and y axis variables. If NULL (default), variable names for x and y will be used.

ylab

Labels for x and y axis variables. If NULL (default), variable names for x and y will be used.

title

The text for the plot title.

subtitle

The text for the plot subtitle. The input to this argument will be ignored if meta.analytic.effect is set to TRUE.

caption

The text for the plot caption.

only.significant

If TRUE, only stats labels for significant effects is shown (Default: FALSE). This can be helpful when a large number of regression coefficients are to be displayed in a single plot. Relevant only when the output is a plot.

point.args

Additional arguments that will be passed to geom_point geom. Please see documentation for that function to know more about these arguments.

errorbar.args

Additional arguments that will be passed to geom_errorbarh geom. Please see documentation for that function to know more about these arguments.

vline

Decides whether to display a vertical line (Default: "TRUE").

vline.args

Additional arguments that will be passed to geom_vline geom. Please see documentation for that function to know more about these arguments.

stats.labels

Logical. Decides whether the statistic and p-values for each coefficient are to be attached to each dot as a text label using ggrepel (Default: TRUE).

stats.label.color

Color for the labels. If set to NULL, colors will be chosen from the specified package (Default: "RColorBrewer") and palette (Default: "Dark2").

stats.label.args

Additional arguments that will be passed to ggrepel::geom_label_repel geom. Please see documentation for that function to know more about these arguments.

package

Name of the package from which the given palette is to be extracted. The available palettes and packages can be checked by running View(paletteer::palettes_d_names).

palette

Name of the package from which the given palette is to be extracted. The available palettes and packages can be checked by running View(paletteer::palettes_d_names).

ggtheme

A {ggplot2} theme. Default value is ggstatsplot::theme_ggstatsplot(). Any of the {ggplot2} themes (e.g., theme_bw()), or themes from extension packages are allowed (e.g., ggthemes::theme_fivethirtyeight(), hrbrthemes::theme_ipsum_ps(), etc.).

...

Additional arguments to tidying method. For more, see parameters::model_parameters.

Note

  1. In case you want to carry out meta-analysis, you will be asked to install the needed packages ({metafor}, {metaplus}, or {metaBMA}) for meta-analysis (if unavailable).

  2. All rows of regression estimates where either of the following quantities is NA will be removed if labels are requested: estimate, statistic, p.value.

  3. Given the rapid pace at which new methods are added to these packages, it is recommended that you install the GitHub versions of {parameters} and {performance} in order to make most of this function.

Examples

# \donttest{
# for reproducibility
set.seed(123)
library(ggstatsplot)

# model object
mod <- lm(formula = mpg ~ cyl * am, data = mtcars)

# to get a plot
ggcoefstats(mod, output = "plot")


# to get a tidy dataframe
ggcoefstats(mod, output = "tidy")
#> # A tibble: 4 × 10
#>   term       estimate std.error conf.level conf.low conf.high statistic df.error
#>   <fct>         <dbl>     <dbl>      <dbl>    <dbl>     <dbl>     <dbl>    <int>
#> 1 (Intercep…    30.9      3.19        0.95    24.3     37.4        9.68       28
#> 2 cyl           -1.98     0.449       0.95    -2.89    -1.06      -4.40       28
#> 3 am            10.2      4.30        0.95     1.36    19.0        2.36       28
#> 4 cyl:am        -1.31     0.707       0.95    -2.75     0.143     -1.85       28
#> # … with 2 more variables: p.value <dbl>, label <glue>

# to get a glance summary
ggcoefstats(mod, output = "glance")
#> # A tibble: 1 × 6
#>     AIC   BIC    R2 R2_adjusted  RMSE Sigma
#>   <dbl> <dbl> <dbl>       <dbl> <dbl> <dbl>
#> 1  166.  173. 0.785       0.762  2.75  2.94
# }