3 Vectors

3.1 Atomic vectors (Exercises 3.2.5)

Q1. How do you create raw and complex scalars? (See ?raw and ?complex.)

A1. In R, scalars are nothing but vectors of length 1, and can be created using the same constructor.

  • Raw vectors

The raw type holds raw bytes, and can be created using charToRaw(). For example,

x <- "A string"

(y <- charToRaw(x))
#> [1] 41 20 73 74 72 69 6e 67

typeof(y)
#> [1] "raw"

An alternative is to use as.raw():

as.raw("–") # en-dash
#> Warning: NAs introduced by coercion
#> Warning: out-of-range values treated as 0 in coercion to
#> raw
#> [1] 00
as.raw("—") # em-dash
#> Warning: NAs introduced by coercion
#> Warning: out-of-range values treated as 0 in coercion to
#> raw
#> [1] 00
  • Complex vectors

Complex vectors are used to represent (surprise!) complex numbers.

Example of a complex scalar:

(x <- complex(length.out = 1, real = 1, imaginary = 8))
#> [1] 1+8i

typeof(x)
#> [1] "complex"

Q2. Test your knowledge of the vector coercion rules by predicting the output of the following uses of c():

c(1, FALSE)
c("a", 1)
c(TRUE, 1L)

A2. The vector coercion rules dictate that the data type with smaller size will be converted to data type with bigger size.

c(1, FALSE)
#> [1] 1 0

c("a", 1)
#> [1] "a" "1"

c(TRUE, 1L)
#> [1] 1 1

Q3. Why is 1 == "1" true? Why is -1 < FALSE true? Why is "one" < 2 false?

A3. The coercion rules for vectors reveal why some of these comparisons return the results that they do.

1 == "1"
#> [1] TRUE

c(1, "1")
#> [1] "1" "1"
-1 < FALSE
#> [1] TRUE

c(-1, FALSE)
#> [1] -1  0
"one" < 2
#> [1] FALSE

c("one", 2)
#> [1] "one" "2"

sort(c("one", 2))
#> [1] "2"   "one"

Q4. Why is the default missing value, NA, a logical vector? What’s special about logical vectors? (Hint: think about c(FALSE, NA_character_).)

A4. The "logical" type is the lowest in the coercion hierarchy.

So NA defaulting to any other type (e.g. "numeric") would mean that any time there is a missing element in a vector, rest of the elements would be converted to a type higher in hierarchy, which would be problematic for types lower in hierarchy.

typeof(NA)
#> [1] "logical"

c(FALSE, NA_character_)
#> [1] "FALSE" NA

Q5. Precisely what do is.atomic(), is.numeric(), and is.vector() test for?

A5. Let’s discuss them one-by-one.

This function checks if the object is a vector of atomic type (or NULL).

Quoting docs:

is.atomic is true for the atomic types (“logical”, “integer”, “numeric”, “complex”, “character” and “raw”) and NULL.

is.atomic(NULL)
#> [1] FALSE

is.atomic(list(NULL))
#> [1] FALSE

Its documentation says:

is.numeric should only return true if the base type of the class is double or integer and values can reasonably be regarded as numeric

Therefore, this function only checks for double and integer base types and not other types based on top of these types (factor, Date, POSIXt, or difftime).

is.numeric(1L)
#> [1] TRUE

is.numeric(factor(1L))
#> [1] FALSE

As per its documentation:

is.vector returns TRUE if x is a vector of the specified mode having no attributes other than names. It returns FALSE otherwise.

Thus, the function can be incorrectif the object has attributes other than names.

x <- c("x" = 1, "y" = 2)

is.vector(x)
#> [1] TRUE

attr(x, "m") <- "abcdef"

is.vector(x)
#> [1] FALSE

A better way to check for a vector:

is.null(dim(x))
#> [1] TRUE

3.2 Attributes (Exercises 3.3.4)

Q1. How is setNames() implemented? How is unname() implemented? Read the source code.

A1. Let’s have a look at implementations for these functions.

setNames
#> function (object = nm, nm) 
#> {
#>     names(object) <- nm
#>     object
#> }
#> <bytecode: 0x55cf356076b0>
#> <environment: namespace:stats>

Given this function signature, we can see why, when no first argument is given, the result is still a named vector.

setNames(, c("a", "b"))
#>   a   b 
#> "a" "b"

setNames(c(1, 2), c("a", "b"))
#> a b 
#> 1 2
unname
#> function (obj, force = FALSE) 
#> {
#>     if (!is.null(names(obj))) 
#>         names(obj) <- NULL
#>     if (!is.null(dimnames(obj)) && (force || !is.data.frame(obj))) 
#>         dimnames(obj) <- NULL
#>     obj
#> }
#> <bytecode: 0x55cf3512c138>
#> <environment: namespace:base>

unname() removes existing names (or dimnames) by setting them to NULL.

unname(setNames(, c("a", "b")))
#> [1] "a" "b"

Q2. What does dim() return when applied to a 1-dimensional vector? When might you use NROW() or NCOL()?

A2. Dimensions for a 1-dimensional vector are NULL. For example,

dim(c(1, 2))
#> NULL

NROW() and NCOL() are helpful for getting dimensions for 1D vectors by treating them as if they were matrices or dataframes.

# example-1
x <- character(0)

dim(x)
#> NULL

nrow(x)
#> NULL
NROW(x)
#> [1] 0

ncol(x)
#> NULL
NCOL(x)
#> [1] 1

# example-2
y <- 1:4

dim(y)
#> NULL

nrow(y)
#> NULL
NROW(y)
#> [1] 4

ncol(y)
#> NULL
NCOL(y)
#> [1] 1

Q3. How would you describe the following three objects? What makes them different from 1:5?

x1 <- array(1:5, c(1, 1, 5))
x2 <- array(1:5, c(1, 5, 1))
x3 <- array(1:5, c(5, 1, 1))

A3. x1, x2, and x3 are one-dimensional arrays, but with different “orientations”, if we were to mentally visualize them.

x1 has 5 entries in the third dimension, x2 in the second dimension, while x1 in the first dimension.

Q4. An early draft used this code to illustrate structure():

structure(1:5, comment = "my attribute")
#> [1] 1 2 3 4 5

But when you print that object you don’t see the comment attribute. Why? Is the attribute missing, or is there something else special about it? (Hint: try using help.)

A4. From ?attributes (emphasis mine):

Note that some attributes (namely class, comment, dim, dimnames, names, row.names and tsp) are treated specially and have restrictions on the values which can be set.

structure(1:5, x = "my attribute")
#> [1] 1 2 3 4 5
#> attr(,"x")
#> [1] "my attribute"

structure(1:5, comment = "my attribute")
#> [1] 1 2 3 4 5

3.3 S3 atomic vectors (Exercises 3.4.5)

Q1. What sort of object does table() return? What is its type? What attributes does it have? How does the dimensionality change as you tabulate more variables?

A1. table() returns an array of integer type and its dimensions scale with the number of variables present.

(x <- table(mtcars$am))
#> 
#>  0  1 
#> 19 13
(y <- table(mtcars$am, mtcars$cyl))
#>    
#>      4  6  8
#>   0  3  4 12
#>   1  8  3  2
(z <- table(mtcars$am, mtcars$cyl, mtcars$vs))
#> , ,  = 0
#> 
#>    
#>      4  6  8
#>   0  0  0 12
#>   1  1  3  2
#> 
#> , ,  = 1
#> 
#>    
#>      4  6  8
#>   0  3  4  0
#>   1  7  0  0

# type
purrr::map(list(x, y, z), typeof)
#> [[1]]
#> [1] "integer"
#> 
#> [[2]]
#> [1] "integer"
#> 
#> [[3]]
#> [1] "integer"

# attributes
purrr::map(list(x, y, z), attributes)
#> [[1]]
#> [[1]]$dim
#> [1] 2
#> 
#> [[1]]$dimnames
#> [[1]]$dimnames[[1]]
#> [1] "0" "1"
#> 
#> 
#> [[1]]$class
#> [1] "table"
#> 
#> 
#> [[2]]
#> [[2]]$dim
#> [1] 2 3
#> 
#> [[2]]$dimnames
#> [[2]]$dimnames[[1]]
#> [1] "0" "1"
#> 
#> [[2]]$dimnames[[2]]
#> [1] "4" "6" "8"
#> 
#> 
#> [[2]]$class
#> [1] "table"
#> 
#> 
#> [[3]]
#> [[3]]$dim
#> [1] 2 3 2
#> 
#> [[3]]$dimnames
#> [[3]]$dimnames[[1]]
#> [1] "0" "1"
#> 
#> [[3]]$dimnames[[2]]
#> [1] "4" "6" "8"
#> 
#> [[3]]$dimnames[[3]]
#> [1] "0" "1"
#> 
#> 
#> [[3]]$class
#> [1] "table"

Q2. What happens to a factor when you modify its levels?

f1 <- factor(letters)
levels(f1) <- rev(levels(f1))

A2. Its levels change but the underlying integer values remain the same.

f1 <- factor(letters)
f1
#>  [1] a b c d e f g h i j k l m n o p q r s t u v w x y z
#> 26 Levels: a b c d e f g h i j k l m n o p q r s t u ... z
as.integer(f1)
#>  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18
#> [19] 19 20 21 22 23 24 25 26

levels(f1) <- rev(levels(f1))
f1
#>  [1] z y x w v u t s r q p o n m l k j i h g f e d c b a
#> 26 Levels: z y x w v u t s r q p o n m l k j i h g f ... a
as.integer(f1)
#>  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18
#> [19] 19 20 21 22 23 24 25 26

Q3. What does this code do? How do f2 and f3 differ from f1?

f2 <- rev(factor(letters))
f3 <- factor(letters, levels = rev(letters))

A3. In this code:

  • f2: Only the underlying integers are reversed, but levels remain unchanged.
f2 <- rev(factor(letters))
f2
#>  [1] z y x w v u t s r q p o n m l k j i h g f e d c b a
#> 26 Levels: a b c d e f g h i j k l m n o p q r s t u ... z
as.integer(f2)
#>  [1] 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9
#> [19]  8  7  6  5  4  3  2  1
  • f3: Both the levels and the underlying integers are reversed.
f3 <- factor(letters, levels = rev(letters))
f3
#>  [1] a b c d e f g h i j k l m n o p q r s t u v w x y z
#> 26 Levels: z y x w v u t s r q p o n m l k j i h g f ... a
as.integer(f3)
#>  [1] 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9
#> [19]  8  7  6  5  4  3  2  1

3.4 Lists (Exercises 3.5.4)

Q1. List all the ways that a list differs from an atomic vector.

A1. Here is a table of comparison:

feature atomic vector list (aka generic vector)
element type unique mixed1
recursive? no yes2
return for out-of-bounds index NA NULL
memory address single memory reference3 reference per list element4

Q2. Why do you need to use unlist() to convert a list to an atomic vector? Why doesn’t as.vector() work?

A2. A list already is a (generic) vector, so as.vector() is not going to change anything, and there is no as.atomic.vector. Thus, we need to use unlist().

x <- list(a = 1, b = 2)

is.vector(x)
#> [1] TRUE
is.atomic(x)
#> [1] FALSE

# still a list
as.vector(x)
#> $a
#> [1] 1
#> 
#> $b
#> [1] 2

# now a vector
unlist(x)
#> a b 
#> 1 2

Q3. Compare and contrast c() and unlist() when combining a date and date-time into a single vector.

A3. Let’s first create a date and datetime object

date <- as.Date("1947-08-15")
datetime <- as.POSIXct("1950-01-26 00:01", tz = "UTC")

And check their attributes and underlying double representation:

attributes(date)
#> $class
#> [1] "Date"
attributes(datetime)
#> $class
#> [1] "POSIXct" "POSIXt" 
#> 
#> $tzone
#> [1] "UTC"

as.double(date) # number of days since the Unix epoch 1970-01-01
#> [1] -8175
as.double(datetime) # number of seconds since then
#> [1] -628991940
  • Behavior with c()

Since S3 method for c() dispatches on the first argument, the resulting class of the vector is going to be the same as the first argument. Because of this, some attributes will be lost.

c(date, datetime)
#> [1] "1947-08-15" "1950-01-26"

attributes(c(date, datetime))
#> $class
#> [1] "Date"

c(datetime, date)
#> [1] "1950-01-26 00:01:00 UTC" "1947-08-15 00:00:00 UTC"

attributes(c(datetime, date))
#> $class
#> [1] "POSIXct" "POSIXt" 
#> 
#> $tzone
#> [1] "UTC"

It removes all attributes and we are left only with the underlying double representations of these objects.

unlist(list(date, datetime))
#> [1]      -8175 -628991940

unlist(list(datetime, date))
#> [1] -628991940      -8175

3.5 Data frames and tibbles (Exercises 3.6.8)

Q1. Can you have a data frame with zero rows? What about zero columns?

A1. Data frame with 0 rows is possible. This is basically a list with a vector of length 0.

data.frame(x = numeric(0))
#> [1] x
#> <0 rows> (or 0-length row.names)

Data frame with 0 columns is also possible. This will be an empty list.

data.frame(row.names = 1)
#> data frame with 0 columns and 1 row

And, finally, data frame with 0 rows and columns is also possible:

data.frame()
#> data frame with 0 columns and 0 rows

dim(data.frame())
#> [1] 0 0

Although, it might not be common to create such data frames, they can be results of subsetting. For example,

BOD[0, ]
#> [1] Time   demand
#> <0 rows> (or 0-length row.names)

BOD[, 0]
#> data frame with 0 columns and 6 rows

BOD[0, 0]
#> data frame with 0 columns and 0 rows

Q2. What happens if you attempt to set rownames that are not unique?

A2. If you attempt to set data frame rownames that are not unique, it will not work.

data.frame(row.names = c(1, 1))
#> Error in data.frame(row.names = c(1, 1)): duplicate row.names: 1

Q3. If df is a data frame, what can you say about t(df), and t(t(df))? Perform some experiments, making sure to try different column types.

A3. Transposing a data frame:

  • transforms it into a matrix
  • coerces all its elements to be of the same type
# original
(df <- head(iris))
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1          5.1         3.5          1.4         0.2  setosa
#> 2          4.9         3.0          1.4         0.2  setosa
#> 3          4.7         3.2          1.3         0.2  setosa
#> 4          4.6         3.1          1.5         0.2  setosa
#> 5          5.0         3.6          1.4         0.2  setosa
#> 6          5.4         3.9          1.7         0.4  setosa

# transpose
t(df)
#>              1        2        3        4        5       
#> Sepal.Length "5.1"    "4.9"    "4.7"    "4.6"    "5.0"   
#> Sepal.Width  "3.5"    "3.0"    "3.2"    "3.1"    "3.6"   
#> Petal.Length "1.4"    "1.4"    "1.3"    "1.5"    "1.4"   
#> Petal.Width  "0.2"    "0.2"    "0.2"    "0.2"    "0.2"   
#> Species      "setosa" "setosa" "setosa" "setosa" "setosa"
#>              6       
#> Sepal.Length "5.4"   
#> Sepal.Width  "3.9"   
#> Petal.Length "1.7"   
#> Petal.Width  "0.4"   
#> Species      "setosa"

# transpose of a transpose
t(t(df))
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 1 "5.1"        "3.5"       "1.4"        "0.2"      
#> 2 "4.9"        "3.0"       "1.4"        "0.2"      
#> 3 "4.7"        "3.2"       "1.3"        "0.2"      
#> 4 "4.6"        "3.1"       "1.5"        "0.2"      
#> 5 "5.0"        "3.6"       "1.4"        "0.2"      
#> 6 "5.4"        "3.9"       "1.7"        "0.4"      
#>   Species 
#> 1 "setosa"
#> 2 "setosa"
#> 3 "setosa"
#> 4 "setosa"
#> 5 "setosa"
#> 6 "setosa"

# is it a dataframe?
is.data.frame(df)
#> [1] TRUE
is.data.frame(t(df))
#> [1] FALSE
is.data.frame(t(t(df)))
#> [1] FALSE

# check type
typeof(df)
#> [1] "list"
typeof(t(df))
#> [1] "character"
typeof(t(t(df)))
#> [1] "character"

# check dimensions
dim(df)
#> [1] 6 5
dim(t(df))
#> [1] 5 6
dim(t(t(df)))
#> [1] 6 5

Q4. What does as.matrix() do when applied to a data frame with columns of different types? How does it differ from data.matrix()?

A4. The return type of as.matrix() depends on the data frame column types.

As docs for as.matrix() mention:

The method for data frames will return a character matrix if there is only atomic columns and any non-(numeric/logical/complex) column, applying as.vector to factors and format to other non-character columns. Otherwise the usual coercion hierarchy (logical < integer < double < complex) will be used, e.g. all-logical data frames will be coerced to a logical matrix, mixed logical-integer will give an integer matrix, etc.

Let’s experiment:

# example with mixed types (coerced to character)
(df <- head(iris))
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1          5.1         3.5          1.4         0.2  setosa
#> 2          4.9         3.0          1.4         0.2  setosa
#> 3          4.7         3.2          1.3         0.2  setosa
#> 4          4.6         3.1          1.5         0.2  setosa
#> 5          5.0         3.6          1.4         0.2  setosa
#> 6          5.4         3.9          1.7         0.4  setosa

as.matrix(df)
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width
#> 1 "5.1"        "3.5"       "1.4"        "0.2"      
#> 2 "4.9"        "3.0"       "1.4"        "0.2"      
#> 3 "4.7"        "3.2"       "1.3"        "0.2"      
#> 4 "4.6"        "3.1"       "1.5"        "0.2"      
#> 5 "5.0"        "3.6"       "1.4"        "0.2"      
#> 6 "5.4"        "3.9"       "1.7"        "0.4"      
#>   Species 
#> 1 "setosa"
#> 2 "setosa"
#> 3 "setosa"
#> 4 "setosa"
#> 5 "setosa"
#> 6 "setosa"

str(as.matrix(df))
#>  chr [1:6, 1:5] "5.1" "4.9" "4.7" "4.6" "5.0" "5.4" ...
#>  - attr(*, "dimnames")=List of 2
#>   ..$ : chr [1:6] "1" "2" "3" "4" ...
#>   ..$ : chr [1:5] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" ...

# another example (no such coercion)
BOD
#>   Time demand
#> 1    1    8.3
#> 2    2   10.3
#> 3    3   19.0
#> 4    4   16.0
#> 5    5   15.6
#> 6    7   19.8

as.matrix(BOD)
#>      Time demand
#> [1,]    1    8.3
#> [2,]    2   10.3
#> [3,]    3   19.0
#> [4,]    4   16.0
#> [5,]    5   15.6
#> [6,]    7   19.8

On the other hand, data.matrix() always returns a numeric matrix.

From documentation of data.matrix():

Return the matrix obtained by converting all the variables in a data frame to numeric mode and then binding them together as the columns of a matrix. Factors and ordered factors are replaced by their internal codes. […] Character columns are first converted to factors and then to integers.

Let’s experiment:

data.matrix(df)
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1          5.1         3.5          1.4         0.2       1
#> 2          4.9         3.0          1.4         0.2       1
#> 3          4.7         3.2          1.3         0.2       1
#> 4          4.6         3.1          1.5         0.2       1
#> 5          5.0         3.6          1.4         0.2       1
#> 6          5.4         3.9          1.7         0.4       1

str(data.matrix(df))
#>  num [1:6, 1:5] 5.1 4.9 4.7 4.6 5 5.4 3.5 3 3.2 3.1 ...
#>  - attr(*, "dimnames")=List of 2
#>   ..$ : chr [1:6] "1" "2" "3" "4" ...
#>   ..$ : chr [1:5] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" ...

3.6 Session information

sessioninfo::session_info(include_base = TRUE)
#> ─ Session info ───────────────────────────────────────────
#>  setting  value
#>  version  R version 4.4.2 (2024-10-31)
#>  os       Ubuntu 22.04.5 LTS
#>  system   x86_64, linux-gnu
#>  ui       X11
#>  language (EN)
#>  collate  C.UTF-8
#>  ctype    C.UTF-8
#>  tz       UTC
#>  date     2024-12-29
#>  pandoc   3.6.1 @ /opt/hostedtoolcache/pandoc/3.6.1/x64/ (via rmarkdown)
#> 
#> ─ Packages ───────────────────────────────────────────────
#>  package     * version date (UTC) lib source
#>  base        * 4.4.2   2024-10-31 [3] local
#>  bookdown      0.41    2024-10-16 [1] RSPM
#>  bslib         0.8.0   2024-07-29 [1] RSPM
#>  cachem        1.1.0   2024-05-16 [1] RSPM
#>  cli           3.6.3   2024-06-21 [1] RSPM
#>  compiler      4.4.2   2024-10-31 [3] local
#>  datasets    * 4.4.2   2024-10-31 [3] local
#>  digest        0.6.37  2024-08-19 [1] RSPM
#>  downlit       0.4.4   2024-06-10 [1] RSPM
#>  emoji         16.0.0  2024-10-28 [1] RSPM
#>  evaluate      1.0.1   2024-10-10 [1] RSPM
#>  fastmap       1.2.0   2024-05-15 [1] RSPM
#>  fs            1.6.5   2024-10-30 [1] RSPM
#>  glue          1.8.0   2024-09-30 [1] RSPM
#>  graphics    * 4.4.2   2024-10-31 [3] local
#>  grDevices   * 4.4.2   2024-10-31 [3] local
#>  htmltools     0.5.8.1 2024-04-04 [1] RSPM
#>  jquerylib     0.1.4   2021-04-26 [1] RSPM
#>  jsonlite      1.8.9   2024-09-20 [1] RSPM
#>  knitr         1.49    2024-11-08 [1] RSPM
#>  lifecycle     1.0.4   2023-11-07 [1] RSPM
#>  magrittr    * 2.0.3   2022-03-30 [1] RSPM
#>  memoise       2.0.1   2021-11-26 [1] RSPM
#>  methods     * 4.4.2   2024-10-31 [3] local
#>  purrr         1.0.2   2023-08-10 [1] RSPM
#>  R6            2.5.1   2021-08-19 [1] RSPM
#>  rlang         1.1.4   2024-06-04 [1] RSPM
#>  rmarkdown     2.29    2024-11-04 [1] RSPM
#>  sass          0.4.9   2024-03-15 [1] RSPM
#>  sessioninfo   1.2.2   2021-12-06 [1] RSPM
#>  stats       * 4.4.2   2024-10-31 [3] local
#>  stringi       1.8.4   2024-05-06 [1] RSPM
#>  stringr       1.5.1   2023-11-14 [1] RSPM
#>  tools         4.4.2   2024-10-31 [3] local
#>  utils       * 4.4.2   2024-10-31 [3] local
#>  vctrs         0.6.5   2023-12-01 [1] RSPM
#>  withr         3.0.2   2024-10-28 [1] RSPM
#>  xfun          0.49    2024-10-31 [1] RSPM
#>  xml2          1.3.6   2023-12-04 [1] RSPM
#>  yaml          2.3.10  2024-07-26 [1] RSPM
#> 
#>  [1] /home/runner/work/_temp/Library
#>  [2] /opt/R/4.4.2/lib/R/site-library
#>  [3] /opt/R/4.4.2/lib/R/library
#> 
#> ──────────────────────────────────────────────────────────