23 Measuring performance

Attaching the needed libraries:

library(profvis, warn.conflicts = FALSE)
library(dplyr, warn.conflicts = FALSE)

23.1 Profiling (Exercises 23.2.4)


Q1. Profile the following function with torture = TRUE. What is surprising? Read the source code of rm() to figure out what’s going on.

f <- function(n = 1e5) {
  x <- rep(1, n)
  rm(x)
}

A1. Let’s source the functions mentioned in exercises.

source("profiling-exercises.R")

First, we try without torture = TRUE: it returns no meaningful results.

profvis(f())
#> Error in parse_rprof_lines(lines, expr_source): No parsing data available. Maybe your function was too fast?

As mentioned in the docs, setting torture = TRUE

Triggers garbage collection after every torture memory allocation call.

This process somehow never seems to finish and crashes the RStudio session when it stops!

profvis(f(), torture = TRUE)

The question says that documentation for rm() may provide clues:

rm
#> function (..., list = character(), pos = -1, envir = as.environment(pos), 
#>     inherits = FALSE) 
#> {
#>     if (...length()) {
#>         dots <- match.call(expand.dots = FALSE)$...
#>         if (!all(vapply(dots, function(x) is.symbol(x) || is.character(x), 
#>             NA, USE.NAMES = FALSE))) 
#>             stop("... must contain names or character strings")
#>         list <- .Primitive("c")(list, vapply(dots, as.character, 
#>             ""))
#>     }
#>     .Internal(remove(list, envir, inherits))
#> }
#> <bytecode: 0x55d467000ec8>
#> <environment: namespace:base>

I still couldn’t figure out why. I would recommend checking out the official answer.


23.2 Microbenchmarking (Exercises 23.3.3)


Q1. Instead of using bench::mark(), you could use the built-in function system.time(). But system.time() is much less precise, so you’ll need to repeat each operation many times with a loop, and then divide to find the average time of each operation, as in the code below.

n <- 1e6
system.time(for (i in 1:n) sqrt(x)) / n
system.time(for (i in 1:n) x^0.5) / n

How do the estimates from system.time() compare to those from bench::mark()? Why are they different?

A1. Let’s benchmark first using these two approaches:

n <- 1e6
x <- runif(100)

# bench -------------------

bench_df <- bench::mark(
  sqrt(x),
  x^0.5,
  iterations = n,
  time_unit = "us"
)

t_bench_df <- bench_df %>%
  select(expression, time) %>%
  rowwise() %>%
  mutate(bench_mean = mean(unlist(time))) %>%
  ungroup() %>%
  select(-time)

# system.time -------------------

# garbage collection performed immediately before the timing
t1_systime_gc <- system.time(for (i in 1:n) sqrt(x), gcFirst = TRUE) / n
t2_systime_gc <- system.time(for (i in 1:n) x^0.5, gcFirst = TRUE) / n

# garbage collection not performed immediately before the timing
t1_systime_nogc <- system.time(for (i in 1:n) sqrt(x), gcFirst = FALSE) / n
t2_systime_nogc <- system.time(for (i in 1:n) x^0.5, gcFirst = FALSE) / n

t_systime_df <- tibble(
  "expression" = bench_df$expression,
  "systime_with_gc" = c(t1_systime_gc["elapsed"], t2_systime_gc["elapsed"]),
  "systime_with_nogc" = c(t1_systime_nogc["elapsed"], t2_systime_nogc["elapsed"])
) %>%
  mutate(
    systime_with_gc = systime_with_gc * 1e6, # in microseconds
    systime_with_nogc = systime_with_nogc * 1e6 # in microseconds
  )

Now we can compare results from these alternatives:

# note that system time columns report time in microseconds
full_join(t_bench_df, t_systime_df, by = "expression")
#> # A tibble: 2 × 4
#>   expression bench_mean systime_with_gc systime_with_nogc
#>   <bch:expr>   <bch:tm>           <dbl>             <dbl>
#> 1 sqrt(x)      844.88ns           0.683             0.472
#> 2 x^0.5          2.22µs           2.05              2.03

The comparison reveals that these two approaches yield quite similar results. Slight differences in exact values is possibly due to differences in the precision of timers used internally by these functions.


Q2. Here are two other ways to compute the square root of a vector. Which do you think will be fastest? Which will be slowest? Use microbenchmarking to test your answers.

x^(1 / 2)
exp(log(x) / 2)

A2. Microbenchmarking all ways to compute square root of a vector mentioned in this chapter.

x <- runif(1000)

bench::mark(
  sqrt(x),
  x^0.5,
  x^(1 / 2),
  exp(log(x) / 2),
  iterations = 1000
) %>%
  select(expression, median) %>%
  arrange(median)
#> # A tibble: 4 × 2
#>   expression      median
#>   <bch:expr>    <bch:tm>
#> 1 sqrt(x)         3.04µs
#> 2 exp(log(x)/2)  12.61µs
#> 3 x^0.5          18.84µs
#> 4 x^(1/2)        18.99µs

The specialized primitive function sqrt() (written in C) is the fastest way to compute square root.


23.3 Session information

sessioninfo::session_info(include_base = TRUE)
#> ─ Session info ───────────────────────────────────────────
#>  setting  value
#>  version  R version 4.4.2 (2024-10-31)
#>  os       Ubuntu 22.04.5 LTS
#>  system   x86_64, linux-gnu
#>  ui       X11
#>  language (EN)
#>  collate  C.UTF-8
#>  ctype    C.UTF-8
#>  tz       UTC
#>  date     2024-12-29
#>  pandoc   3.6.1 @ /opt/hostedtoolcache/pandoc/3.6.1/x64/ (via rmarkdown)
#> 
#> ─ Packages ───────────────────────────────────────────────
#>  package     * version date (UTC) lib source
#>  base        * 4.4.2   2024-10-31 [3] local
#>  bench         1.1.3   2023-05-04 [1] RSPM
#>  bookdown      0.41    2024-10-16 [1] RSPM
#>  bslib         0.8.0   2024-07-29 [1] RSPM
#>  cachem        1.1.0   2024-05-16 [1] RSPM
#>  cli           3.6.3   2024-06-21 [1] RSPM
#>  compiler      4.4.2   2024-10-31 [3] local
#>  datasets    * 4.4.2   2024-10-31 [3] local
#>  digest        0.6.37  2024-08-19 [1] RSPM
#>  downlit       0.4.4   2024-06-10 [1] RSPM
#>  dplyr       * 1.1.4   2023-11-17 [1] RSPM
#>  emoji         16.0.0  2024-10-28 [1] RSPM
#>  evaluate      1.0.1   2024-10-10 [1] RSPM
#>  fastmap       1.2.0   2024-05-15 [1] RSPM
#>  fs            1.6.5   2024-10-30 [1] RSPM
#>  generics      0.1.3   2022-07-05 [1] RSPM
#>  glue          1.8.0   2024-09-30 [1] RSPM
#>  graphics    * 4.4.2   2024-10-31 [3] local
#>  grDevices   * 4.4.2   2024-10-31 [3] local
#>  htmltools     0.5.8.1 2024-04-04 [1] RSPM
#>  htmlwidgets   1.6.4   2023-12-06 [1] RSPM
#>  jquerylib     0.1.4   2021-04-26 [1] RSPM
#>  jsonlite      1.8.9   2024-09-20 [1] RSPM
#>  knitr         1.49    2024-11-08 [1] RSPM
#>  lifecycle     1.0.4   2023-11-07 [1] RSPM
#>  magrittr    * 2.0.3   2022-03-30 [1] RSPM
#>  memoise       2.0.1   2021-11-26 [1] RSPM
#>  methods     * 4.4.2   2024-10-31 [3] local
#>  pillar        1.10.0  2024-12-17 [1] RSPM
#>  pkgconfig     2.0.3   2019-09-22 [1] RSPM
#>  profmem       0.6.0   2020-12-13 [1] RSPM
#>  profvis     * 0.4.0   2024-09-20 [1] RSPM
#>  R6            2.5.1   2021-08-19 [1] RSPM
#>  rlang         1.1.4   2024-06-04 [1] RSPM
#>  rmarkdown     2.29    2024-11-04 [1] RSPM
#>  sass          0.4.9   2024-03-15 [1] RSPM
#>  sessioninfo   1.2.2   2021-12-06 [1] RSPM
#>  stats       * 4.4.2   2024-10-31 [3] local
#>  stringi       1.8.4   2024-05-06 [1] RSPM
#>  stringr       1.5.1   2023-11-14 [1] RSPM
#>  tibble        3.2.1   2023-03-20 [1] RSPM
#>  tidyselect    1.2.1   2024-03-11 [1] RSPM
#>  tools         4.4.2   2024-10-31 [3] local
#>  utf8          1.2.4   2023-10-22 [1] RSPM
#>  utils       * 4.4.2   2024-10-31 [3] local
#>  vctrs         0.6.5   2023-12-01 [1] RSPM
#>  withr         3.0.2   2024-10-28 [1] RSPM
#>  xfun          0.49    2024-10-31 [1] RSPM
#>  xml2          1.3.6   2023-12-04 [1] RSPM
#>  yaml          2.3.10  2024-07-26 [1] RSPM
#> 
#>  [1] /home/runner/work/_temp/Library
#>  [2] /opt/R/4.4.2/lib/R/site-library
#>  [3] /opt/R/4.4.2/lib/R/library
#> 
#> ──────────────────────────────────────────────────────────