19 Quasiquotation

Attaching the needed libraries:

19.1 Motivation (Exercises 19.2.2)


Q1. For each function in the following base R code, identify which arguments are quoted and which are evaluated.

library(MASS)

mtcars2 <- subset(mtcars, cyl == 4)

with(mtcars2, sum(vs))
sum(mtcars2$am)

rm(mtcars2)

A1. To identify which arguments are quoted and which are evaluated, we can use the trick mentioned in the book:

If you’re ever unsure about whether an argument is quoted or evaluated, try executing the code outside of the function. If it doesn’t work or does something different, then that argument is quoted.

The package argument in library() is quoted:

library(MASS)

MASS
#> Error: object 'MASS' not found
  • subset(mtcars, cyl == 4)

The argument x is evaluated, while the argument subset is quoted.

mtcars2 <- subset(mtcars, cyl == 4)

invisible(mtcars)

cyl == 4
#> Error: object 'cyl' not found
  • with(mtcars2, sum(vs))

The argument data is evaluated, while expr argument is quoted.

with(mtcars2, sum(vs))
#> [1] 10

invisible(mtcars2)

sum(vs)
#> Error: object 'vs' not found
  • sum(mtcars2$am)

The argument ... is evaluated.

sum(mtcars2$am)
#> [1] 8

mtcars2$am
#>  [1] 1 0 0 1 1 1 0 1 1 1 1
  • rm(mtcars2)

The trick we are using so far won’t work here since trying to print mtcars2 will always fail after rm() has made a pass at it.

rm(mtcars2)

We can instead look at the docs for ...:

… the objects to be removed, as names (unquoted) or character strings (quoted).

Thus, this argument is not evaluated, but rather quoted.


Q2. For each function in the following tidyverse code, identify which arguments are quoted and which are evaluated.

library(dplyr)
library(ggplot2)

by_cyl <- mtcars %>%
  group_by(cyl) %>%
  summarise(mean = mean(mpg))

ggplot(by_cyl, aes(cyl, mean)) +
  geom_point()

A2. As seen in the answer for Q1., library() quotes its first argument:

In the following code:

by_cyl <- mtcars %>%
  group_by(cyl) %>%
  summarise(mean = mean(mpg))

In the following code:

  • ggplot() evaluates the data argument
  • aes() quotes its arguments
ggplot(by_cyl, aes(cyl, mean)) +
  geom_point()

19.2 Quoting (Exercises 19.3.6)


Q1. How is expr() implemented? Look at its source code.

A1. Looking at the source code, we can see that expr() is a simple wrapper around enexpr(), and captures and returns the user-entered expressions:

rlang::expr
#> function (expr) 
#> {
#>     enexpr(expr)
#> }
#> <bytecode: 0x55af3e9c9e90>
#> <environment: namespace:rlang>

For example:

x <- expr(x <- 1)
x
#> x <- 1

In its turn, enexpr() calls native code:

rlang::enexpr
#> function (arg) 
#> {
#>     .Call(ffi_enexpr, substitute(arg), parent.frame())
#> }
#> <bytecode: 0x55af3b26b060>
#> <environment: namespace:rlang>

Q2. Compare and contrast the following two functions. Can you predict the output before running them?

f1 <- function(x, y) {
  exprs(x = x, y = y)
}
f2 <- function(x, y) {
  enexprs(x = x, y = y)
}
f1(a + b, c + d)
f2(a + b, c + d)

A2. The exprs() captures and returns the expressions specified by the developer instead of their values:

f1 <- function(x, y) {
  exprs(x = x, y = y)
}

f1(a + b, c + d)
#> $x
#> x
#> 
#> $y
#> y

On the other hand, enexprs() captures the user-entered expressions and returns their values:

f2 <- function(x, y) {
  enexprs(x = x, y = y)
}

f2(a + b, c + d)
#> $x
#> a + b
#> 
#> $y
#> c + d

Q3. What happens if you try to use enexpr() with an expression (i.e. enexpr(x + y)? What happens if enexpr() is passed a missing argument?

A3. If you try to use enexpr() with an expression, it fails because it works only with symbol.

enexpr(x + y)
#> Error in `enexpr()`:
#> ! `arg` must be a symbol

If enexpr() is passed a missing argument, it returns a missing argument:

arg <- missing_arg()

enexpr(arg)

is_missing(enexpr(arg))
#> [1] TRUE

Q4. How are exprs(a) and exprs(a = ) different? Think about both the input and the output.

A4. The key difference between exprs(a) and exprs(a = ) is that the former will return an unnamed list, while the latter will return a named list. This is because the former is interpreted as an unnamed argument, while the latter a named argument.

exprs(a)
#> [[1]]
#> a

exprs(a = )
#> $a

In both cases, a is treated as a symbol:

map_lgl(exprs(a), is_symbol)
#>      
#> TRUE

map_lgl(exprs(a = ), is_symbol)
#>    a 
#> TRUE

But, the argument is missing only in the latter case, since only the name but no corresponding value is provided:

map_lgl(exprs(a), is_missing)
#>       
#> FALSE

map_lgl(exprs(a = ), is_missing)
#>    a 
#> TRUE

Q5. What are other differences between exprs() and alist()? Read the documentation for the named arguments of exprs() to find out.

A5. Here are some additional differences between exprs() and alist().

  • Names: If the inputs are not named, exprs() provides a way to name them automatically using .named argument.
alist("x" = 1, TRUE, "z" = expr(x + y))
#> $x
#> [1] 1
#> 
#> [[2]]
#> [1] TRUE
#> 
#> $z
#> expr(x + y)

exprs("x" = 1, TRUE, "z" = expr(x + y), .named = TRUE)
#> $x
#> [1] 1
#> 
#> $`TRUE`
#> [1] TRUE
#> 
#> $z
#> expr(x + y)
  • Ignoring empty arguments: The .ignore_empty argument in exprs() gives you a much finer control over what to do with the empty arguments, while alist() doesn’t provide a way to ignore such arguments.
alist("x" = 1, , TRUE, )
#> $x
#> [1] 1
#> 
#> [[2]]
#> 
#> 
#> [[3]]
#> [1] TRUE
#> 
#> [[4]]

exprs("x" = 1, , TRUE, , .ignore_empty = "trailing")
#> $x
#> [1] 1
#> 
#> [[2]]
#> 
#> 
#> [[3]]
#> [1] TRUE

exprs("x" = 1, , TRUE, , .ignore_empty = "none")
#> $x
#> [1] 1
#> 
#> [[2]]
#> 
#> 
#> [[3]]
#> [1] TRUE
#> 
#> [[4]]

exprs("x" = 1, , TRUE, , .ignore_empty = "all")
#> $x
#> [1] 1
#> 
#> [[2]]
#> [1] TRUE
  • Names injection: Using .unquote_names argument in exprs(), we can inject a name for the argument.
alist(foo := bar)
#> [[1]]
#> `:=`(foo, bar)

exprs(foo := bar, .unquote_names = FALSE)
#> [[1]]
#> `:=`(foo, bar)

exprs(foo := bar, .unquote_names = TRUE)
#> $foo
#> bar

Q6. The documentation for substitute() says:

Substitution takes place by examining each component of the parse tree as follows:

  • If it is not a bound symbol in env, it is unchanged.
  • If it is a promise object (i.e., a formal argument to a function) the expression slot of the promise replaces the symbol.
  • If it is an ordinary variable, its value is substituted, unless env is .GlobalEnv in which case the symbol is left unchanged.

Create examples that illustrate each of the above cases.

A6. See below examples that illustrate each of the above-mentioned cases.

If it is not a bound symbol in env, it is unchanged.

Symbol x is not bound in env, so it remains unchanged.

substitute(x + y, env = list(y = 2))
#> x + 2

If it is a promise object (i.e., a formal argument to a function) the expression slot of the promise replaces the symbol.

msg <- "old"
delayedAssign("myVar", msg) # creates a promise
substitute(myVar)
#> myVar
msg <- "new!"
myVar
#> [1] "new!"

If it is an ordinary variable, its value is substituted, unless env is .GlobalEnv in which case the symbol is left unchanged.

substitute(x + y, env = env(x = 2, y = 1))
#> 2 + 1

x <- 2
y <- 1
substitute(x + y, env = .GlobalEnv)
#> x + y

19.3 Unquoting (Exercises 19.4.8)


Q1. Given the following components:

xy <- expr(x + y)
xz <- expr(x + z)
yz <- expr(y + z)
abc <- exprs(a, b, c)

Use quasiquotation to construct the following calls:

(x + y) / (y + z)
-(x + z)^(y + z)
(x + y) + (y + z) - (x + y)
atan2(x + y, y + z)
sum(x + y, x + y, y + z)
sum(a, b, c)
mean(c(a, b, c), na.rm = TRUE)
foo(a = x + y, b = y + z)

A1. Using quasiquotation to construct the specified calls:

xy <- expr(x + y)
xz <- expr(x + z)
yz <- expr(y + z)
abc <- exprs(a, b, c)

expr((!!xy) / (!!yz))
#> (x + y)/(y + z)

expr(-(!!xz)^(!!yz))
#> -(x + z)^(y + z)

expr(((!!xy)) + (!!yz) - (!!xy))
#> (x + y) + (y + z) - (x + y)

call2("atan2", expr(!!xy), expr(!!yz))
#> atan2(x + y, y + z)

call2("sum", expr(!!xy), expr(!!xy), expr(!!yz))
#> sum(x + y, x + y, y + z)

call2("sum", !!!abc)
#> sum(a, b, c)

expr(mean(c(!!!abc), na.rm = TRUE))
#> mean(c(a, b, c), na.rm = TRUE)

call2("foo", a = expr(!!xy), b = expr(!!yz))
#> foo(a = x + y, b = y + z)

Q2. The following two calls print the same, but are actually different:

(a <- expr(mean(1:10)))
#> mean(1:10)
(b <- expr(mean(!!(1:10))))
#> mean(1:10)
identical(a, b)
#> [1] FALSE

What’s the difference? Which one is more natural?

A2. We can see the difference between these two expression if we convert them to lists:

as.list(expr(mean(1:10)))
#> [[1]]
#> mean
#> 
#> [[2]]
#> 1:10

as.list(expr(mean(!!(1:10))))
#> [[1]]
#> mean
#> 
#> [[2]]
#>  [1]  1  2  3  4  5  6  7  8  9 10

As can be seen, the second element of a is a call object, while that in b is an integer vector:

waldo::compare(a, b)
#> `old[[2]]` is a call
#> `new[[2]]` is an integer vector (1, 2, 3, 4, 5, ...)

The same can also be noticed in ASTs for these expressions:

ast(expr(mean(1:10)))
#> █─expr 
#> └─█─mean 
#>   └─█─`:` 
#>     ├─1 
#>     └─10

ast(expr(mean(!!(1:10))))
#> █─expr 
#> └─█─mean 
#>   └─<inline integer>

The first call is more natural, since the second one inlines a vector directly into the call, something that is rarely done.


19.4 ... (dot-dot-dot) (Exercises 19.6.5)


Q1. One way to implement exec() is shown below. Describe how it works. What are the key ideas?

exec <- function(f, ..., .env = caller_env()) {
  args <- list2(...)
  do.call(f, args, envir = .env)
}

A1. The keys ideas that underlie this implementation of exec() function are the following:

  • It constructs a call using function f and its argument ..., and evaluates the call in the environment .env.

  • It uses dynamic dots via list2(), which means that you can splice arguments using !!!, you can inject names using :=, and trailing commas are not a problem.

Here is an example:

vec <- c(1:5, NA)
args_list <- list(trim = 0, na.rm = TRUE)

exec(mean, vec, !!!args_list, , .env = caller_env())
#> [1] 3

rm("exec")

Q2. Carefully read the source code for interaction(), expand.grid(), and par(). Compare and contrast the techniques they use for switching between dots and list behaviour.

A2. Source code reveals the following comparison table:

Function Capture the dots Handle list input
interaction() args <- list(...) length(args) == 1L && is.list(args[[1L]])
expand.grid() args <- list(...) length(args) == 1L && is.list(args[[1L]])
par() args <- list(...) length(args) == 1L && (is.list(args[[1L]] || is.null(args[[1L]])))

All functions capture the dots in a list.

Using these dots, the functions check:

  • if a list was entered as an argument by checking the number of arguments
  • if the count is 1, by checking if the argument is a list

Q3. Explain the problem with this definition of set_attr()

set_attr <- function(x, ...) {
  attr <- rlang::list2(...)
  attributes(x) <- attr
  x
}
set_attr(1:10, x = 10)
#> Error in attributes(x) <- attr: attributes must be named

A3. The set_attr() function signature has a parameter called x, and additionally it uses dynamic dots to pass multiple arguments to specify additional attributes for x.

But, as shown in the example, this creates a problem when the attribute is itself named x. Naming the arguments won’t help either:

set_attr <- function(x, ...) {
  attr <- rlang::list2(...)
  attributes(x) <- attr
  x
}
set_attr(x = 1:10, x = 10)
#> Error in set_attr(x = 1:10, x = 10): formal argument "x" matched by multiple actual arguments

We can avoid these issues by renaming the parameter:

set_attr <- function(.x, ...) {
  attr <- rlang::list2(...)
  attributes(.x) <- attr
  .x
}

set_attr(.x = 1:10, x = 10)
#>  [1]  1  2  3  4  5  6  7  8  9 10
#> attr(,"x")
#> [1] 10

19.5 Case studies (Exercises 19.7.5)


Q1. In the linear-model example, we could replace the expr() in reduce(summands, ~ expr(!!.x + !!.y)) with call2(): reduce(summands, call2, "+"). Compare and contrast the two approaches. Which do you think is easier to read?

A1. We can rewrite the linear() function from this chapter using call2() as follows:

linear <- function(var, val) {
  var <- ensym(var)
  coef_name <- map(seq_along(val[-1]), ~ expr((!!var)[[!!.x]]))

  summands <- map2(val[-1], coef_name, ~ expr((!!.x * !!.y)))
  summands <- c(val[[1]], summands)

  reduce(summands, ~ call2("+", .x, .y))
}

linear(x, c(10, 5, -4))
#> 10 + (5 * x[[1L]]) + (-4 * x[[2L]])

I personally find the version with call2() to be much more readable since the !! syntax is a bit esoteric.


Q2. Re-implement the Box-Cox transform defined below using unquoting and new_function():

bc <- function(lambda) {
  if (lambda == 0) {
    function(x) log(x)
  } else {
    function(x) (x^lambda - 1) / lambda
  }
}

A2. Re-implementation of the Box-Cox transform using unquoting and new_function():

bc_new <- function(lambda) {
  lambda <- enexpr(lambda)

  if (!!lambda == 0) {
    new_function(
      exprs(x = ),
      expr(log(x))
    )
  } else {
    new_function(
      exprs(x = ),
      expr((x^(!!lambda) - 1) / (!!lambda))
    )
  }
}

Let’s try it out to see if it produces the same output as before:

bc(0)(1)
#> [1] 0
bc_new(0)(1)
#> [1] 0

bc(2)(2)
#> [1] 1.5
bc_new(2)(2)
#> [1] 1.5

Q3. Re-implement the simple compose() defined below using quasiquotation and new_function():

compose <- function(f, g) {
  function(...) f(g(...))
}

A3. Following is a re-implementation of compose() using quasiquotation and new_function():

compose_new <- function(f, g) {
  f <- enexpr(f) # or ensym(f)
  g <- enexpr(g) # or ensym(g)

  new_function(
    exprs(... = ),
    expr((!!f)((!!g)(...)))
  )
}

Checking that the new version behaves the same way as the original version:

not_null <- compose(`!`, is.null)
not_null(4)
#> [1] TRUE

not_null2 <- compose_new(`!`, is.null)
not_null2(4)
#> [1] TRUE

19.6 Session information

sessioninfo::session_info(include_base = TRUE)
#> ─ Session info ───────────────────────────────────────────
#>  setting  value
#>  version  R version 4.4.2 (2024-10-31)
#>  os       Ubuntu 22.04.5 LTS
#>  system   x86_64, linux-gnu
#>  ui       X11
#>  language (EN)
#>  collate  C.UTF-8
#>  ctype    C.UTF-8
#>  tz       UTC
#>  date     2024-12-29
#>  pandoc   3.6.1 @ /opt/hostedtoolcache/pandoc/3.6.1/x64/ (via rmarkdown)
#> 
#> ─ Packages ───────────────────────────────────────────────
#>  package     * version date (UTC) lib source
#>  base        * 4.4.2   2024-10-31 [3] local
#>  bookdown      0.41    2024-10-16 [1] RSPM
#>  bslib         0.8.0   2024-07-29 [1] RSPM
#>  cachem        1.1.0   2024-05-16 [1] RSPM
#>  cli           3.6.3   2024-06-21 [1] RSPM
#>  colorspace    2.1-1   2024-07-26 [1] RSPM
#>  compiler      4.4.2   2024-10-31 [3] local
#>  crayon        1.5.3   2024-06-20 [1] RSPM
#>  datasets    * 4.4.2   2024-10-31 [3] local
#>  diffobj       0.3.5   2021-10-05 [1] RSPM
#>  digest        0.6.37  2024-08-19 [1] RSPM
#>  downlit       0.4.4   2024-06-10 [1] RSPM
#>  dplyr       * 1.1.4   2023-11-17 [1] RSPM
#>  emoji         16.0.0  2024-10-28 [1] RSPM
#>  evaluate      1.0.1   2024-10-10 [1] RSPM
#>  farver        2.1.2   2024-05-13 [1] RSPM
#>  fastmap       1.2.0   2024-05-15 [1] RSPM
#>  fs            1.6.5   2024-10-30 [1] RSPM
#>  generics      0.1.3   2022-07-05 [1] RSPM
#>  ggplot2     * 3.5.1   2024-04-23 [1] RSPM
#>  glue          1.8.0   2024-09-30 [1] RSPM
#>  graphics    * 4.4.2   2024-10-31 [3] local
#>  grDevices   * 4.4.2   2024-10-31 [3] local
#>  grid          4.4.2   2024-10-31 [3] local
#>  gtable        0.3.6   2024-10-25 [1] RSPM
#>  htmltools     0.5.8.1 2024-04-04 [1] RSPM
#>  jquerylib     0.1.4   2021-04-26 [1] RSPM
#>  jsonlite      1.8.9   2024-09-20 [1] RSPM
#>  knitr         1.49    2024-11-08 [1] RSPM
#>  labeling      0.4.3   2023-08-29 [1] RSPM
#>  lifecycle     1.0.4   2023-11-07 [1] RSPM
#>  lobstr      * 1.1.2   2022-06-22 [1] RSPM
#>  magrittr    * 2.0.3   2022-03-30 [1] RSPM
#>  MASS        * 7.3-61  2024-06-13 [3] CRAN (R 4.4.2)
#>  memoise       2.0.1   2021-11-26 [1] RSPM
#>  methods     * 4.4.2   2024-10-31 [3] local
#>  munsell       0.5.1   2024-04-01 [1] RSPM
#>  pillar        1.10.0  2024-12-17 [1] RSPM
#>  pkgconfig     2.0.3   2019-09-22 [1] RSPM
#>  purrr       * 1.0.2   2023-08-10 [1] RSPM
#>  R6            2.5.1   2021-08-19 [1] RSPM
#>  rlang       * 1.1.4   2024-06-04 [1] RSPM
#>  rmarkdown     2.29    2024-11-04 [1] RSPM
#>  sass          0.4.9   2024-03-15 [1] RSPM
#>  scales        1.3.0   2023-11-28 [1] RSPM
#>  sessioninfo   1.2.2   2021-12-06 [1] RSPM
#>  stats       * 4.4.2   2024-10-31 [3] local
#>  stringi       1.8.4   2024-05-06 [1] RSPM
#>  stringr       1.5.1   2023-11-14 [1] RSPM
#>  tibble        3.2.1   2023-03-20 [1] RSPM
#>  tidyselect    1.2.1   2024-03-11 [1] RSPM
#>  tools         4.4.2   2024-10-31 [3] local
#>  utils       * 4.4.2   2024-10-31 [3] local
#>  vctrs         0.6.5   2023-12-01 [1] RSPM
#>  waldo         0.6.1   2024-11-07 [1] RSPM
#>  withr         3.0.2   2024-10-28 [1] RSPM
#>  xfun          0.49    2024-10-31 [1] RSPM
#>  xml2          1.3.6   2023-12-04 [1] RSPM
#>  yaml          2.3.10  2024-07-26 [1] RSPM
#> 
#>  [1] /home/runner/work/_temp/Library
#>  [2] /opt/R/4.4.2/lib/R/site-library
#>  [3] /opt/R/4.4.2/lib/R/library
#> 
#> ──────────────────────────────────────────────────────────