Parametric, non-parametric, robust, and Bayesian two-sample tests.
Usage
two_sample_test(
data,
x,
y,
subject.id = NULL,
type = "parametric",
paired = FALSE,
alternative = "two.sided",
digits = 2L,
conf.level = 0.95,
effsize.type = "g",
var.equal = FALSE,
bf.prior = 0.707,
tr = 0.2,
nboot = 100L,
...
)
Arguments
- data
A data frame (or a tibble) from which variables specified are to be taken. Other data types (e.g., matrix,table, array, etc.) will not be accepted. Additionally, grouped data frames from
{dplyr}
should be ungrouped before they are entered asdata
.- x
The grouping (or independent) variable from
data
. In case of a repeated measures or within-subjects design, ifsubject.id
argument is not available or not explicitly specified, the function assumes that the data has already been sorted by such an id by the user and creates an internal identifier. So if your data is not sorted, the results can be inaccurate when there are more than two levels inx
and there areNA
s present. The data is expected to be sorted by user in subject-1, subject-2, ..., pattern.- y
The response (or outcome or dependent) variable from
data
.- subject.id
Relevant in case of a repeated measures or within-subjects design (
paired = TRUE
, i.e.), it specifies the subject or repeated measures identifier. Important: Note that if this argument isNULL
(which is the default), the function assumes that the data has already been sorted by such an id by the user and creates an internal identifier. So if your data is not sorted and you leave this argument unspecified, the results can be inaccurate when there are more than two levels inx
and there areNA
s present.- type
A character specifying the type of statistical approach:
"parametric"
"nonparametric"
"robust"
"bayes"
You can specify just the initial letter.
- paired
Logical that decides whether the experimental design is repeated measures/within-subjects or between-subjects. The default is
FALSE
.- alternative
a character string specifying the alternative hypothesis, must be one of
"two.sided"
(default),"greater"
or"less"
. You can specify just the initial letter.- digits
Number of digits for rounding or significant figures. May also be
"signif"
to return significant figures or"scientific"
to return scientific notation. Control the number of digits by adding the value as suffix, e.g.digits = "scientific4"
to have scientific notation with 4 decimal places, ordigits = "signif5"
for 5 significant figures (see alsosignif()
).- conf.level
Scalar between
0
and1
(default:95%
confidence/credible intervals,0.95
). IfNULL
, no confidence intervals will be computed.- effsize.type
Type of effect size needed for parametric tests. The argument can be
"d"
(for Cohen's d) or"g"
(for Hedge's g).- var.equal
a logical variable indicating whether to treat the two variances as being equal. If
TRUE
then the pooled variance is used to estimate the variance otherwise the Welch (or Satterthwaite) approximation to the degrees of freedom is used.- bf.prior
A number between
0.5
and2
(default0.707
), the prior width to use in calculating Bayes factors and posterior estimates. In addition to numeric arguments, several named values are also recognized:"medium"
,"wide"
, and"ultrawide"
, corresponding to r scale values of1/2
,sqrt(2)/2
, and1
, respectively. In case of an ANOVA, this value corresponds to scale for fixed effects.- tr
Trim level for the mean when carrying out
robust
tests. In case of an error, try reducing the value oftr
, which is by default set to0.2
. Lowering the value might help.- nboot
Number of bootstrap samples for computing confidence interval for the effect size (Default:
100L
).- ...
Currently ignored.
Value
The returned tibble data frame can contain some or all of the following columns (the exact columns will depend on the statistical test):
statistic
: the numeric value of a statisticdf
: the numeric value of a parameter being modeled (often degrees of freedom for the test)df.error
anddf
: relevant only if the statistic in question has two degrees of freedom (e.g. anova)p.value
: the two-sided p-value associated with the observed statisticmethod
: the name of the inferential statistical testestimate
: estimated value of the effect sizeconf.low
: lower bound for the effect size estimateconf.high
: upper bound for the effect size estimateconf.level
: width of the confidence intervalconf.method
: method used to compute confidence intervalconf.distribution
: statistical distribution for the effecteffectsize
: the name of the effect sizen.obs
: number of observationsexpression
: pre-formatted expression containing statistical details
For examples, see data frame output vignette.
Two-sample tests
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
between-subjects
Hypothesis testing
Type | No. of groups | Test | Function used |
Parametric | 2 | Student's or Welch's t-test | stats::t.test() |
Non-parametric | 2 | Mann-Whitney U test | stats::wilcox.test() |
Robust | 2 | Yuen's test for trimmed means | WRS2::yuen() |
Bayesian | 2 | Student's t-test | BayesFactor::ttestBF() |
Effect size estimation
Type | No. of groups | Effect size | CI available? | Function used |
Parametric | 2 | Cohen's d, Hedge's g | Yes | effectsize::cohens_d() , effectsize::hedges_g() |
Non-parametric | 2 | r (rank-biserial correlation) | Yes | effectsize::rank_biserial() |
Robust | 2 | Algina-Keselman-Penfield robust standardized difference | Yes | WRS2::akp.effect() |
Bayesian | 2 | difference | Yes | bayestestR::describe_posterior() |
within-subjects
Hypothesis testing
Type | No. of groups | Test | Function used |
Parametric | 2 | Student's t-test | stats::t.test() |
Non-parametric | 2 | Wilcoxon signed-rank test | stats::wilcox.test() |
Robust | 2 | Yuen's test on trimmed means for dependent samples | WRS2::yuend() |
Bayesian | 2 | Student's t-test | BayesFactor::ttestBF() |
Effect size estimation
Type | No. of groups | Effect size | CI available? | Function used |
Parametric | 2 | Cohen's d, Hedge's g | Yes | effectsize::cohens_d() , effectsize::hedges_g() |
Non-parametric | 2 | r (rank-biserial correlation) | Yes | effectsize::rank_biserial() |
Robust | 2 | Algina-Keselman-Penfield robust standardized difference | Yes | WRS2::wmcpAKP() |
Bayesian | 2 | difference | Yes | bayestestR::describe_posterior() |
Citation
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
Examples
# ----------------------- within-subjects -------------------------------------
# data
df <- dplyr::filter(bugs_long, condition %in% c("LDLF", "LDHF"))
# for reproducibility
set.seed(123)
# ----------------------- parametric ---------------------------------------
two_sample_test(df, condition, desire, subject.id = subject, paired = TRUE, type = "parametric")
#> # A tibble: 1 × 16
#> term group statistic df.error p.value method alternative
#> <chr> <chr> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 desire condition 6.65 90 0.00000000222 Paired t-test two.sided
#> effectsize estimate conf.level conf.low conf.high conf.method
#> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 Hedges' g 0.691 0.95 0.462 0.917 ncp
#> conf.distribution n.obs expression
#> <chr> <int> <list>
#> 1 t 91 <language>
# ----------------------- non-parametric -----------------------------------
two_sample_test(df, condition, desire, subject.id = subject, paired = TRUE, type = "nonparametric")
#> # A tibble: 1 × 14
#> parameter1 parameter2 statistic p.value method
#> <chr> <chr> <dbl> <dbl> <chr>
#> 1 desire condition 2250. 0.0000000241 Wilcoxon signed rank test
#> alternative effectsize estimate conf.level conf.low conf.high
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 two.sided r (rank biserial) 0.761 0.95 0.642 0.844
#> conf.method n.obs expression
#> <chr> <int> <list>
#> 1 normal 91 <language>
# ----------------------- robust --------------------------------------------
two_sample_test(df, condition, desire, subject.id = subject, paired = TRUE, type = "robust")
#> # A tibble: 1 × 15
#> statistic df.error p.value
#> <dbl> <dbl> <dbl>
#> 1 6.46 54 0.0000000313
#> method
#> <chr>
#> 1 Yuen's test on trimmed means for dependent samples
#> effectsize estimate conf.level
#> <chr> <dbl> <dbl>
#> 1 Algina-Keselman-Penfield robust standardized difference 0.533 0.95
#> conf.low conf.high mu small medium large n.obs expression
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <list>
#> 1 0.369 0.707 0 0.1 0.3 0.5 91 <language>
# ----------------------- Bayesian ---------------------------------------
two_sample_test(df, condition, desire, subject.id = subject, paired = TRUE, type = "bayes")
#> # A tibble: 1 × 16
#> term effectsize estimate conf.level conf.low conf.high pd
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Difference Bayesian t-test 1.63 0.95 1.13 2.11 1
#> prior.distribution prior.location prior.scale bf10 method
#> <chr> <dbl> <dbl> <dbl> <chr>
#> 1 cauchy 0 0.707 4762370. Bayesian t-test
#> conf.method log_e_bf10 n.obs expression
#> <chr> <dbl> <int> <list>
#> 1 ETI 15.4 91 <language>
# ----------------------- between-subjects -------------------------------------
# for reproducibility
set.seed(123)
# ----------------------- parametric ---------------------------------------
# unequal variance
two_sample_test(ToothGrowth, supp, len, type = "parametric")
#> # A tibble: 1 × 18
#> parameter1 parameter2 mean.parameter1 mean.parameter2 statistic df.error
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 len supp 20.7 17.0 1.92 55.3
#> p.value method alternative effectsize estimate conf.level
#> <dbl> <chr> <chr> <chr> <dbl> <dbl>
#> 1 0.0606 Welch Two Sample t-test two.sided Hedges' g 0.488 0.95
#> conf.low conf.high conf.method conf.distribution n.obs expression
#> <dbl> <dbl> <chr> <chr> <int> <list>
#> 1 -0.0217 0.993 ncp t 60 <language>
# equal variance
two_sample_test(ToothGrowth, supp, len, type = "parametric", var.equal = TRUE)
#> # A tibble: 1 × 18
#> parameter1 parameter2 mean.parameter1 mean.parameter2 statistic df.error
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 len supp 20.7 17.0 1.92 58
#> p.value method alternative effectsize estimate conf.level conf.low
#> <dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 0.0604 Two Sample t-test two.sided Hedges' g 0.488 0.95 -0.0217
#> conf.high conf.method conf.distribution n.obs expression
#> <dbl> <chr> <chr> <int> <list>
#> 1 0.993 ncp t 60 <language>
# ----------------------- non-parametric -----------------------------------
two_sample_test(ToothGrowth, supp, len, type = "nonparametric")
#> # A tibble: 1 × 14
#> parameter1 parameter2 statistic p.value method alternative
#> <chr> <chr> <dbl> <dbl> <chr> <chr>
#> 1 len supp 576. 0.0645 Wilcoxon rank sum test two.sided
#> effectsize estimate conf.level conf.low conf.high conf.method n.obs
#> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <int>
#> 1 r (rank biserial) 0.279 0.95 -0.00812 0.523 normal 60
#> expression
#> <list>
#> 1 <language>
# ----------------------- robust --------------------------------------------
two_sample_test(ToothGrowth, supp, len, type = "robust")
#> # A tibble: 1 × 11
#> statistic df.error p.value
#> <dbl> <dbl> <dbl>
#> 1 2.29 33.5 0.0286
#> method
#> <chr>
#> 1 Yuen's test on trimmed means for independent samples
#> effectsize estimate conf.level
#> <chr> <dbl> <dbl>
#> 1 Algina-Keselman-Penfield robust standardized difference 0.683 0.95
#> conf.low conf.high n.obs expression
#> <dbl> <dbl> <int> <list>
#> 1 -0.00736 2.36 60 <language>
# ----------------------- Bayesian ---------------------------------------
two_sample_test(ToothGrowth, supp, len, type = "bayes")
#> # A tibble: 1 × 16
#> term effectsize estimate conf.level conf.low conf.high pd
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Difference Bayesian t-test 3.16 0.95 -0.338 6.78 0.961
#> prior.distribution prior.location prior.scale bf10 method
#> <chr> <dbl> <dbl> <dbl> <chr>
#> 1 cauchy 0 0.707 1.20 Bayesian t-test
#> conf.method log_e_bf10 n.obs expression
#> <chr> <dbl> <int> <list>
#> 1 ETI 0.181 60 <language>