Parametric, non-parametric, robust, and Bayesian one-sample tests.
Usage
one_sample_test(
data,
x,
type = "parametric",
test.value = 0,
alternative = "two.sided",
digits = 2L,
conf.level = 0.95,
tr = 0.2,
bf.prior = 0.707,
effsize.type = "g",
...
)
Arguments
- data
A data frame (or a tibble) from which variables specified are to be taken. Other data types (e.g., matrix,table, array, etc.) will not be accepted. Additionally, grouped data frames from
{dplyr}
should be ungrouped before they are entered asdata
.- x
A numeric variable from the data frame
data
.- type
A character specifying the type of statistical approach:
"parametric"
"nonparametric"
"robust"
"bayes"
You can specify just the initial letter.
- test.value
A number indicating the true value of the mean (Default:
0
).- alternative
a character string specifying the alternative hypothesis, must be one of
"two.sided"
(default),"greater"
or"less"
. You can specify just the initial letter.- digits
Number of digits for rounding or significant figures. May also be
"signif"
to return significant figures or"scientific"
to return scientific notation. Control the number of digits by adding the value as suffix, e.g.digits = "scientific4"
to have scientific notation with 4 decimal places, ordigits = "signif5"
for 5 significant figures (see alsosignif()
).- conf.level
Scalar between
0
and1
(default:95%
confidence/credible intervals,0.95
). IfNULL
, no confidence intervals will be computed.- tr
Trim level for the mean when carrying out
robust
tests. In case of an error, try reducing the value oftr
, which is by default set to0.2
. Lowering the value might help.- bf.prior
A number between
0.5
and2
(default0.707
), the prior width to use in calculating Bayes factors and posterior estimates. In addition to numeric arguments, several named values are also recognized:"medium"
,"wide"
, and"ultrawide"
, corresponding to r scale values of1/2
,sqrt(2)/2
, and1
, respectively. In case of an ANOVA, this value corresponds to scale for fixed effects.- effsize.type
Type of effect size needed for parametric tests. The argument can be
"d"
(for Cohen's d) or"g"
(for Hedge's g).- ...
Currently ignored.
Value
The returned tibble data frame can contain some or all of the following columns (the exact columns will depend on the statistical test):
statistic
: the numeric value of a statisticdf
: the numeric value of a parameter being modeled (often degrees of freedom for the test)df.error
anddf
: relevant only if the statistic in question has two degrees of freedom (e.g. anova)p.value
: the two-sided p-value associated with the observed statisticmethod
: the name of the inferential statistical testestimate
: estimated value of the effect sizeconf.low
: lower bound for the effect size estimateconf.high
: upper bound for the effect size estimateconf.level
: width of the confidence intervalconf.method
: method used to compute confidence intervalconf.distribution
: statistical distribution for the effecteffectsize
: the name of the effect sizen.obs
: number of observationsexpression
: pre-formatted expression containing statistical details
For examples, see data frame output vignette.
One-sample tests
The table below provides summary about:
statistical test carried out for inferential statistics
type of effect size estimate and a measure of uncertainty for this estimate
functions used internally to compute these details
Hypothesis testing
Type | Test | Function used |
Parametric | One-sample Student's t-test | stats::t.test() |
Non-parametric | One-sample Wilcoxon test | stats::wilcox.test() |
Robust | Bootstrap-t method for one-sample test | WRS2::trimcibt() |
Bayesian | One-sample Student's t-test | BayesFactor::ttestBF() |
Effect size estimation
Type | Effect size | CI available? | Function used |
Parametric | Cohen's d, Hedge's g | Yes | effectsize::cohens_d() , effectsize::hedges_g() |
Non-parametric | r (rank-biserial correlation) | Yes | effectsize::rank_biserial() |
Robust | trimmed mean | Yes | WRS2::trimcibt() |
Bayes Factor | difference | Yes | bayestestR::describe_posterior() |
Citation
Patil, I., (2021). statsExpressions: R Package for Tidy Dataframes and Expressions with Statistical Details. Journal of Open Source Software, 6(61), 3236, https://doi.org/10.21105/joss.03236
Examples
# for reproducibility
set.seed(123)
# ----------------------- parametric -----------------------
one_sample_test(mtcars, wt, test.value = 3)
#> # A tibble: 1 × 15
#> mu statistic df.error p.value method alternative effectsize
#> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr>
#> 1 3 1.26 31 0.218 One Sample t-test two.sided Hedges' g
#> estimate conf.level conf.low conf.high conf.method conf.distribution n.obs
#> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <int>
#> 1 0.217 0.95 -0.127 0.557 ncp t 32
#> expression
#> <list>
#> 1 <language>
# ----------------------- non-parametric -------------------
one_sample_test(mtcars, wt, test.value = 3, type = "nonparametric")
#> # A tibble: 1 × 12
#> statistic p.value method alternative effectsize
#> <dbl> <dbl> <chr> <chr> <chr>
#> 1 319 0.308 Wilcoxon signed rank test two.sided r (rank biserial)
#> estimate conf.level conf.low conf.high conf.method n.obs expression
#> <dbl> <dbl> <dbl> <dbl> <chr> <int> <list>
#> 1 0.208 0.95 -0.184 0.543 normal 32 <language>
# ----------------------- robust ---------------------------
one_sample_test(mtcars, wt, test.value = 3, type = "robust")
#> # A tibble: 1 × 10
#> statistic p.value n.obs method effectsize
#> <dbl> <dbl> <int> <chr> <chr>
#> 1 1.18 0.275 32 Bootstrap-t method for one-sample test Trimmed mean
#> estimate conf.level conf.low conf.high expression
#> <dbl> <dbl> <dbl> <dbl> <list>
#> 1 3.20 0.95 2.85 3.54 <language>
# ----------------------- Bayesian -------------------------
one_sample_test(mtcars, wt, test.value = 3, type = "bayes")
#> # A tibble: 1 × 16
#> term effectsize estimate conf.level conf.low conf.high pd
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Difference Bayesian t-test 0.195 0.95 -0.165 0.555 0.86
#> prior.distribution prior.location prior.scale bf10 method
#> <chr> <dbl> <dbl> <dbl> <chr>
#> 1 cauchy 0 0.707 0.387 Bayesian t-test
#> conf.method log_e_bf10 n.obs expression
#> <chr> <dbl> <int> <list>
#> 1 ETI -0.950 32 <language>