glm
) across multiple
grouping variables.R/grouped_glm.R
grouped_glm.Rd
Function to run generalized linear model (glm
) across multiple
grouping variables.
grouped_glm( data, grouping.vars, ..., output = "tidy", tidy.args = list(conf.int = TRUE, conf.level = 0.95), augment.args = list() )
data | Dataframe (or tibble) from which variables are to be taken. |
---|---|
grouping.vars | Grouping variables. |
... | Additional arguments to |
output | A character describing what output is expected. Two possible
options: |
tidy.args | A list of arguments to be used in the relevant |
augment.args | A list of arguments to be used in the relevant |
A tibble dataframe with tidy results from linear model.
groupedstats::grouped_glm( data = mtcars, formula = am ~ wt, grouping.vars = cyl, family = stats::binomial(link = "logit") )#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: algorithm did not converge#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: collapsing to unique 'x' values#> Warning: collapsing to unique 'x' values#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred#> # A tibble: 6 x 9 #> cyl term estimate std.error statistic p.value conf.low conf.high #> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 4 (Intercept) 13.8 7.79 1.77 0.0773 3.30 38.4 #> 2 4 wt -5.12 2.98 -1.71 0.0865 -14.5 -1.04 #> 3 6 (Intercept) 417. 871566. 0.000478 1.00 -113315. NA #> 4 6 wt -137. 284315. -0.000481 1.00 NA 25376. #> 5 8 (Intercept) 28.3 21.4 1.32 0.187 0.00542 99.8 #> 6 8 wt -8.46 6.17 -1.37 0.171 -29.1 -0.563 #> # … with 1 more variable: significance <chr>