Augmented data from grouped analysis of any function that has
data
argument in its function call.
Usage
grouped_augment(data, grouping.vars, ..f, ..., augment.args = list())
Arguments
- data
Dataframe (or tibble) from which variables are to be taken.
- grouping.vars
Grouping variables.
- ..f
A function, or function name as a string.
- ...
<dynamic> Arguments for
.fn
.- augment.args
A list of arguments to be used in the relevant
S3
method.
Value
A tibble::tibble()
with information about data points.
Examples
set.seed(123)
library(dplyr)
#>
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#>
#> filter, lag
#> The following objects are masked from ‘package:base’:
#>
#> intersect, setdiff, setequal, union
# linear mixed effects model
grouped_augment(
data = mutate(MASS::Aids2, interval = death - diag),
grouping.vars = sex,
..f = lme4::lmer,
formula = interval ~ age + (1 | status),
control = lme4::lmerControl(optimizer = "bobyqa")
)
#> # A tibble: 2,843 × 15
#> sex interval age status .fitted .resid .hat .cooksd .fixed .mu
#> <fct> <int> <int> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 F 543 30 A 604. -61.5 0.0261 0.000301 493. 604.
#> 2 F 138 44 D 321. -183. 0.0181 0.00182 432. 321.
#> 3 F 1 25 D 403. -402. 0.0289 0.0144 515. 403.
#> 4 F 43 55 D 273. -230. 0.0249 0.00402 385. 273.
#> 5 F 215 70 D 208. 6.90 0.0495 0.00000756 319. 208.
#> 6 F 260 17 D 438. -178. 0.0420 0.00421 549. 438.
#> 7 F 511 57 D 265. 246. 0.0271 0.00505 376. 265.
#> 8 F 92 71 D 204. -112. 0.0517 0.00208 315. 204.
#> 9 F 494 47 D 308. 186. 0.0190 0.00198 419. 308.
#> 10 F 49 67 D 221. -172. 0.0431 0.00404 333. 221.
#> # … with 2,833 more rows, and 5 more variables: .offset <dbl>, .sqrtXwt <dbl>,
#> # .sqrtrwt <dbl>, .weights <dbl>, .wtres <dbl>